Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gut ; 72(9): 1758-1773, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37019619

RESUMO

OBJECTIVE: Therapy-induced tumour microenvironment (TME) remodelling poses a major hurdle for cancer cure. As the majority of patients with hepatocellular carcinoma (HCC) exhibits primary or acquired resistance to antiprogrammed cell death (ligand)-1 (anti-PD-[L]1) therapies, we aimed to investigate the mechanisms underlying tumour adaptation to immune-checkpoint targeting. DESIGN: Two immunotherapy-resistant HCC models were generated by serial orthotopic implantation of HCC cells through anti-PD-L1-treated syngeneic, immunocompetent mice and interrogated by single-cell RNA sequencing (scRNA-seq), genomic and immune profiling. Key signalling pathway was investigated by lentiviral-mediated knockdown and pharmacological inhibition, and further verified by scRNA-seq analysis of HCC tumour biopsies from a phase II trial of pembrolizumab (NCT03419481). RESULTS: Anti-PD-L1-resistant tumours grew >10-fold larger than parental tumours in immunocompetent but not immunocompromised mice without overt genetic changes, which were accompanied by intratumoral accumulation of myeloid-derived suppressor cells (MDSC), cytotoxic to exhausted CD8+ T cell conversion and exclusion. Mechanistically, tumour cell-intrinsic upregulation of peroxisome proliferator-activated receptor-gamma (PPARγ) transcriptionally activated vascular endothelial growth factor-A (VEGF-A) production to drive MDSC expansion and CD8+ T cell dysfunction. A selective PPARγ antagonist triggered an immune suppressive-to-stimulatory TME conversion and resensitised tumours to anti-PD-L1 therapy in orthotopic and spontaneous HCC models. Importantly, 40% (6/15) of patients with HCC resistant to pembrolizumab exhibited tumorous PPARγ induction. Moreover, higher baseline PPARγ expression was associated with poorer survival of anti-PD-(L)1-treated patients in multiple cancer types. CONCLUSION: We uncover an adaptive transcriptional programme by which tumour cells evade immune-checkpoint targeting via PPARγ/VEGF-A-mediated TME immunosuppression, thus providing a strategy for counteracting immunotherapeutic resistance in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Carcinoma Hepatocelular/patologia , Fator A de Crescimento do Endotélio Vascular , Neoplasias Hepáticas/patologia , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , PPAR gama , Microambiente Tumoral , Antígeno B7-H1
2.
Microbiome ; 8(1): 108, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32678024

RESUMO

BACKGROUND: Altered microbiome composition and aberrant promoter hypermethylation of tumor suppressor genes (TSGs) are two important hallmarks of colorectal cancer (CRC). Here we performed concurrent 16S rRNA gene sequencing and methyl-CpG binding domain-based capture sequencing in 33 tissue biopsies (5 normal colonic mucosa tissues, 4 pairs of adenoma and adenoma-adjacent tissues, and 10 pairs of CRC and CRC-adjacent tissues) to identify significant associations between TSG promoter hypermethylation and CRC-associated bacteria, followed by functional validation of the methylation-associated bacteria. RESULTS: Fusobacterium nucleatum and Hungatella hathewayi were identified as the top two methylation-regulating bacteria. Targeted analysis on bona fide TSGs revealed that H. hathewayi and Streptococcus spp. significantly correlated with CDX2 and MLH1 promoter hypermethylation, respectively. Mechanistic validation with cell-line and animal models revealed that F. nucleatum and H. hathewayi upregulated DNA methyltransferase. H. hathewayi inoculation also promoted colonic epithelial cell proliferation in germ-free and conventional mice. CONCLUSION: Our integrative analysis revealed previously unknown epigenetic regulation of TSGs in host cells through inducing DNA methyltransferase by F. nucleatum and H. hathewayi, and established the latter as CRC-promoting bacteria. Video abstract.


Assuntos
Clostridiaceae/patogenicidade , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Metilação de DNA , Células Epiteliais/metabolismo , Fusobacterium nucleatum/patogenicidade , Genes Supressores de Tumor , Regiões Promotoras Genéticas/genética , Idoso , Animais , Epigênese Genética , Epigenoma , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética
3.
Int J Cancer ; 143(12): 3106-3119, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30006927

RESUMO

Ovarian high-grade serous carcinoma (HGSC) is the most lethal gynecological malignancy. Prevailing evidences suggest that drug resistance and recurrence of ovarian HGSC are caused by the presence of cancer stem cells. Therefore, targeting cancer stems is appealing, however, all attempts to date, have failed. To circumvent this limit, we analyzed differential transcriptomes at early differentiation of ovarian HGSC stem cells and identified the developmental transcription factor GATA3 as highly expressed in stem, compared to progenitor cells. GATA3 expression associates with poor prognosis of ovarian HGSC patients, and was found to recruit the histone H3, lysine 27 (H3K27) demethylase, UTX, activate stemness markers, and promote stem-like phenotypes in ovarian HGSC cell lines. Targeting UTX by its inhibitor, GSKJ4, impeded GATA3-driven stemness phenotypes, and enhanced apoptosis of GATA3-expressing cancer cells. Combinations of gemcitabine or paclitaxel with GSKJ4, resulted in a synergistic cytotoxic effect. Our findings provide evidence for a new role for GATA3 in ovarian HGSC stemness, and demonstrate that GATA3 may serve as a biomarker for precision epigenetic therapy in the future.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Fator de Transcrição GATA3/efeitos dos fármacos , Fator de Transcrição GATA3/fisiologia , Células-Tronco Neoplásicas/patologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Fosfatase Alcalina/metabolismo , Antígenos CD/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Biomarcadores Tumorais/metabolismo , Caderinas/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Linhagem da Célula , Desoxicitidina/administração & dosagem , Desoxicitidina/análogos & derivados , Feminino , Fator de Transcrição GATA3/metabolismo , Histona Desmetilases/metabolismo , Humanos , Células-Tronco Neoplásicas/metabolismo , Proteínas Nucleares/metabolismo , Neoplasias Ovarianas/metabolismo , Paclitaxel/administração & dosagem , Prognóstico , Ligação Proteica , Esferoides Celulares/enzimologia , Esferoides Celulares/metabolismo , Gencitabina
4.
Methods Mol Biol ; 1238: 321-32, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25421668

RESUMO

Head and neck cancers are characterized by both genetic and epigenetic aberrations. In treating head and neck cancers, ionizing radiation (IR) is an essential modality in either definitive or adjuvant setting. However, radiation-resistant head and neck cancers are not uncommon. The major biological determinator for IR resistance was previously considered at genetic level because DNA is the major target of irradiation damage. However, in head and neck cancers, recent evidence demonstrated epigenetic disturbance after IR, implicating its role in IR resistance. Hence, this chapter intends to establish an in vitro model for investigating DNA methylation changes in IR-resistant head and neck cancer cells. Bisulfite pyrosequencing is the main methodology it introduced.


Assuntos
Epigênese Genética/efeitos da radiação , Neoplasias de Cabeça e Pescoço/patologia , Tolerância a Radiação/genética , Linhagem Celular Tumoral , Metilação de DNA/genética , Metilação de DNA/efeitos da radiação , Genômica , Neoplasias de Cabeça e Pescoço/genética , Humanos , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...